lunes, 25 de febrero de 2008

documento de ingles





aluminium
I. ASM International. Handbook Committee.TA459.M43 1990 620.1'6 90-115ISBN 0-87170-378-5 (v. 2)SAN 204-7586Printed in the United States of AmericaIntroduction to Aluminum and Aluminum AlloysElwin L. Rooy, Aluminum Company of America




Introduction






ALUMINUM,


the second most plentiful metallic element on earth, became an economic competitor in engineering applications as recently as the end of the 19th century. It was to become a metal for its time. The emergence of three important industrial developments would, by demanding material characteristics consistent with the unique qualities of aluminum and its alloys, greatly benefit growth in the production and use of the new metal.


When the electrolytic reduction of alumina (Al2O3) dissolved in molten cryolite was independently developed by Charles Hall in Ohio and Paul Heroult in France in 1886, the first internal-combustion-engine-powered vehicles were appearing, and aluminum would play a role as an automotive material of increasing engineering value. Electrification would require immense quantities of light-weight conductive metal for long-distance transmission and for construction of the towers needed to support the overhead network of cables which deliver electrical energy from sites of power generation. Within a few decades the Wright brothers gave birth to an entirely new industry which grew in partnership with the aluminium industry development of structurally reliable, strong, and fracture-resistant parts for airframes, engines, and ultimately, formissile bodies, fuel cells, and satellite components.


The aluminum industry's growth was not limited to these developments. The first commercial applications of aluminium were novelty items such as mirror frames, house numbers, and serving trays. Cooking utensils, were also a major early market. In time, aluminum grew in diversity of applications to the extent that virtually every aspect of modern life would be directly or indirectly affected by its use.




Properties.


Among the most striking characteristics of aluminum is its versatility. The range of physical and mechanical properties that can be developed--from refined high-purity aluminum (see the article "Properties of Pure Metals" in this Volume) to the most complex alloys--is remarkable. More than three hundred alloy compositions are commonly recognized, and many additional variations have been developed internationally and in supplier/consumer relationships. Compositions for both wrought and cast aluminum alloys are provided in the article "Alloy and Temper Designation Systems for Aluminum and Aluminum Alloys" that immediately follows.The properties of aluminum that make this metal and its alloys the most economical and attractive for a wide variety of uses are appearance, light weight, fabricability, physical properties, mechanical properties, and corrosion resistance.


Aluminum has a density of only 2.7 g/cm3, approximately one-third as much as steel (7.83 g/cm3), copper (8.93 g/cm3), or brass (8.53 g/cm3). It can display excellent corrosion resistance in most environments, including atmosphere, water (including salt water), petrochemicals, and many chemical systems. The corrosion characteristics of aluminum are examined in detail in Corrosion, Volume 13 of ASM Handbook, formerly 9th Edition Metals Handbook.


Aluminum surfaces can be highly reflective. Radiant energy, visible light, radiant heat, and electromagnetic waves are efficiently reflected, while anodized and dark anodized surfaces can be reflective or absorbent. The reflectance of polished aluminum, over a broad range of wave lengths, leads to its selection for a variety of decorative and functional uses.


Aluminum typically displays excellent electrical and thermal conductivity, but specific alloys have been developed with high degrees of electrical resistivity. These alloys are useful, for example, in high-torque electric motors. Aluminum is often selected for its electrical conductivity, which is nearly twice that of copper on an equivalent weight basis. The requirements of high conductivity and mechanical strength can be met by use of long-line, high-voltage, aluminum steelcoredreinforced transmission cable. The thermal conductivity of aluminum alloys, about 50 to 60% that of copper, is advantageous in heat exchangers, evaporators, electrically heated appliances and utensils, and automotive cylinder heads and radiators.


Aluminum is nonferromagnetic, a property of importance in the electrical and electronics industries. It is nonpyrophoric, which is important in applications involving inflammable or explosive-materials handling or exposure. Aluminum is also nontoxic and is routinely used in containers for foods and beverages. It has an attractive appearance in its natural finish, which can be soft and lustrous or bright and shiny. It can be virtually any color or texture.Some aluminum alloys exceed structural steel in strength. However, pure aluminum and certain aluminum alloys are noted for extremely low strength and hardness.




Aluminum Production


All aluminum production is based on the Hall-Heroult process. Alumina refined from bauxite is dissolved in a cryolite bath with various fluoride salt additions made to control bath temperature, density, resistivity, and alumina solubility. An electrical current is then passed through the bath to electrolyze the dissolved alumina with oxygen forming at and reacting with the carbon anode, and aluminum collecting as a metal pad at the cathode. The separated metal is periodically removed by siphon or vacuum methods into crucibles, which are then transferred to casting facilities where remelt or fabricating ingots are produced.


The major impurities of smelted aluminum are iron and silicon, but zinc, gallium, titanium, and vanadium are typically present as minor contaminants. Internationally, minimum aluminum purity is the primary criterion for defining composition and value. In the United States, a convention for considering the relative concentrations of iron and silicon as the more important criteria has evolved. Reference to grades of unalloyed metal may therefore be by purity alone, for example, 99.70% aluminum, or by the method sanctioned by the Aluminum Association in which standardized Pxxx grades have been established. In the latter case, the digits following the letter P refer to the maximum decimal percentages of silicon and iron, respectively. For example, P1020 is unalloyed smelter-produced metal containing no more than 0.10% Si and no more than 0.20% Fe. P0506 is a grade which contains no more than 0.05% Si and no more than 0.06% Fe. Common P grades range from P0202 to P1535, each of which incorporates additional impurity limits for control purposes.


Refining steps are available to attain much higher levels of purity. Purities of 99.99% are achieved through fractional crystallization or Hoopes cell operation. The latter process is a three-layer electrolytic process which employs molten salt of greater density than pure molten aluminum. Combinations of these purification techniques result in 99.999% purity for highly specialized applications.


Production Statistics.


World production of primary aluminum totaled 17,304 thousand metric tonnes (17.304 × 106 Mg) in 1988 (Fig. 1). From 1978 to 1988, world production increased 22.5%, an annual growth rate of 1.6%. As shown in Fig. 2, the United States accounted for 22.8% of the world's production in 1988, while Europe accounted for 21.7%. The remaining 55.5% was produced by Asia (5.6%), Canada (8.9%), Latin/South America (8.8%), Oceania (7.8%), Africa (3.1%), and others (21.3%). The total U.S. supply in 1988 was 7,533,749 Mg in 1988, with primary productionrepresenting 54% of total supply, imports accounting for 20%, and secondary recovery representing 26% (Fig. 3). The source of secondary production is scrap in all forms, as well as the product of skim and dross processing. Primary and secondary production of aluminum are integrally related and complementary. Many wrought and cast compositions are constructed to reflect the impact of controlled element contamination that may accompany scrap consumption. A recent trend has been increased use of scrap in primary and integrated secondary fabricating facilities for various wroughtproducts, including can sheet.





MAPA CONCEPTUAL EN INGLES






No hay comentarios: